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ABSTRACT

A rational phenomenological theory of fatigue lifetime prediction under
arbitrary variation of cycle amplitude is presented. The theory is based on the
concept of damage curve families and on an equivalent loading postulate which de-
fines specimens that have suffered identical damage under different loading pro-
grams. Lifetime analysis has been performed for various cases of piecewise con-
stant and continuous variation of cycle amplitude. For continuous variation, the
method requires numerical integration of nonlinear first order differential equations

which have been established in this work. . o
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L. Introduction

A basic problem in design for fatigue safety is the prediction of lifetime of

a structural part when the amplitude of cyclic load varies in prescribed fashion

with the number of cycles.

The classical test for fatigue failure is sinusoidal constant amplitude
cycling-to-failure of a specimen or structural part resulting in the number of
cycles-to-failure or lifetime N(O0), where ¢ 1is the stress amplitude. The plot
of ¢ against N is known as the S-N curve. Suppose now that the specimen
is subjected to a loading program o(n) where n is number of cycles. The
problem is to determine N - the number of cycles to failure under this loading

program.

In view of the extreme complexity of internal fatigue failure mechanisms,
there is little hope of resolving the problem on the basis of micro-structural
\
considerations. An alternative is to consider the problem in phenomenological
fashion. It should, however, be borne in mind that fatigue failure test data are
subject to considerable scatter. In order not to further complicate a very difficilt
problem, it is reasonable to disregard initially the statistical scatter aspects o

the problem. Thus all results are to be interpreted in some "central measure"

sense. The problem considered in this sense has become known as cumulative damage

theory. 1t has been the subject of numerous investigations, particularly in the
last thirty years. Since there are many excellent reviews of previous work, e.g.

i1, 2, 3, 4], present discussion will be limited to some selected aspects.

A basic concept in the approaches given is the damage function which defines

n some sense the damage produced in a specimen when subjected to n cycles at
stress amplitude 0 . This function is often written as F(n/N) where N 1is the

ifetime for constant amplitude O cycling. Past work seems to have heen limited




to the case where the loading is piecewise constant, here referred to as multi-

stage loading. Particular attention has been given to the simplest case of two-

stage loading. For multi-stage loadings the damage function is written

n n n
g 2 k
F( ﬁl s Jowow ow e N—) (1.1)
1 =2 k
[t is stipulated that
0 SF <L G2

tailure being defined by F=1.

A simplistic and well known damage function has been postulated by Palmgren
[5] and by Miner [6] and has become known as Miner's rule. According to them,

failure in a multi-stage loading is defined by

= CE3)

e g
z[H?

vhere

n, - number of cycles at level Oi

Ni - lifetime at constant amplitude Oi

According to this rule damage produced by 9 for n, cycles is defined as

»‘/Ni and the individual damages are additive and independent of sequence.

This simplistic approach does not in general comply with reality. It is knowr
¢xperimentally and it is physically plausible that the order of loading can signif-
jcantly affect the lifetime of a specimen. Thus, in two-stage constant amplitude

joadings, the left side of (1.3), which is sometimes termed Miner's coefficient,




(s usually different from unity and is dependent on loading sequence.

It should be noted that the only material characteristic entering into Miner's
‘ule is the S-N curve for constant amplitude loading. It seems unreascnable to
assume that such simple information would be sufficient for lifetime prediction

inder arbitrary loading programs.

Marco and Starkey [7] assumed that "damage" produced by n cycles at level ©
s given by (n/N)a where the exponent is a function of ¢. They arrived at a
tallure condition which for two-stage loading assumes the form
n

2
1 N,

= (1.4)

«nd can be generalized to multi-stage loading. Apparently, the dependence of the
exponent o on O must be uncovered by experimental means and this does not
appear to be an easy task. It will be seen that (1.4) is a specific special case
of the theory to be developed in this work which does specify the dependence of

on O 1in unequivocal fashion.

Shanlev [3] has constructed a theory in which it is postulated that damage
can be described in terms of Coqn. Corten and Dolan [9] described damage in the

form Cn' . A detailed account of these and other approaches may be found in [1].

The present work provides a systematic new approach to the problem which is
tased on the concept of damage curve families, to be defined further on. The
description of ''damage'" by some function is avoided. A better concept is residual
lifetime, this being a quantity which, unlike damage, can be defined and measured.

Ihe damage curves are defined in terms of this quantity.




.. The Concept of Damage Curves

We consider a specimen which is subjected to cyclic loading of constant

naximum amplitude O], failure taking place after N cycles. The pair of numbers

Ui
nl 5 Ol define a point on the §S-N curve of the specimen, Fig. 1.
If the specimen is subjected to 0y cycles, oy < Nl’ at 01,

certain amount of unknown internal damage. The pair of numbers, n

it suffers a

il 5 Gl ’

a4 point in the s-n plane. The region bounded by the n,0 axes and the S-N curve

defines

nay be considered as a damage region. Each of the points within the damage region

specifies in some sense an amount of damage for n cycles at amplitude o .

Next we consider the situation where after n1 cycles at

continued at some stress amplitude O. The remaining number of cvcles to failure

ays cycling is

s called the residual lifetime and is denoted N-n where N 1is the constant

amplitude lifetime at . The pairs of numbers n;c define a curve in the S-N

plane, Fig. 1, which is called the damage curve. Evidently, the damage curve unde:

consideration must pass through the point nl ]

It should be noted that in this description the damage suffered by a specimen
s essentially defined by its residual lifetime which is a measurable quantity.

“he 5-N curve is the ultimate damage curve when remaining lifetime is zero.

The basic assumption is made that a damage curve is uniquely defined by its

~nitial point. This implies that if any other point on the damage curve nz: T
vay, is interpreted as the first stage of a two-stage cycling experiment, the

emaining lifetimes for various subsequent stages will be determined by the initia
camage curve which passes through n s Ol. This assumption can be accepted with or

vithout distinction between low-high and high-low loadings. Further discussion of

rhis latter aspect is given later.




Uniqueness of the damage curve passing through a point and subsequent analytical
procedures for lifetime computations are based on a fundamental postulate which will

now be explained. For this purpose we shall introduce the concept of equivalent cyclic

loadings. Cyclic loading programs are termed equivalent for stress amplitude o if
ror subsequent constant amplitude loading, at same stress level 0, residual lifetimes

are the same. The equivalent loading postulate is now stated as follows: Cyclic load-

ings which are equivalent for one stress level are equivalent for all stress levels.

To show uniqueness of damage curves on the basis of this assumption, consider
the damage curve, Fig. 1, as having been obtained by a series of two-stage loadings

in all of which the first stage is n Ol, as previously explained. In the two

l’
stage program o for n, cycles, 9, for an infinitesimal number of cycles the resi-
dual lifetime is nzr. In the loading program o, for N2 — nzr cycles the residual

lifetime is evidently also nzr.

follows by the equivalent loading postulate that if after completion of these two

Therefore these two loadings are equivalent. It

loading programs the specimens are cycled to failure at some other stress level, o,
the residual lifetime will be the same nr , Fig. 1. Therefore the loadings C1

. A Fromlys . x

for n, cycles, ¢ for infinitesimal number of cycles; Ty for N2 -0, cycles, o for
¢ 7 i ¥ s 5 3

infinitesimal number of cycles have the same residual lifetime n for subsequent

constant ¢ cycling to failure. This proves uniqueness of the damage curve.

A damage curve as defined describes the results of a large number of fatigue
tailure experiments in two level loadings. It is desirable that a maximum number
ot parameters which influence fatigue failure be kept constant in this series of
experiments. The parameters to be considered are : frequency of loading, mean
stress Um - the average of maximum and minimum amplitudes in a cycle and R -
the ration between minimum and maximum amplitudes in a cycle. It may be assumed

that the frequency is constant in all cyclic loadings and that either om or R 1is

| —
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constant.,  In the special case of Om = 0, R = =1 both dm and R can be kept

constant. Tt Is In general to be expected that a change in any of these parametere

will chanpge the damage curves,

Because of the inherent scatter of fatigue testing, all damage curves must

be Interpreted in some best fit sensge, as 1s the case for S-N curves.

The equations of the damage curves are wvitten in the general form

g = o(n,y) = Osf(n,Y) (2.1)

where Y 1is a4 parameter, Os is the static failure stress or some other con-
venient stress parameter and f 1s a non-dimensional function. We now proceed k.

<o discuss some general properties of the damage curves.

{a) All damage curves pass through the point 0} cs*

Evidently, since statlc failure occurs at one quarter cycle which is considered

as n=0, it follows from (2.1) that

t(0,v) =1 (2.2)

Fowever, curve fitting difficultles may require use of a Os value which is not

cqual to the statilc test result,

{(h) Damage curves do not Intersect.

To prove this assertion we conslder the case of two low-high load cycling pro-
s rams with equal amplitude pairs 01 and Oye The number of cycles at 01 is n
in the first propram and n1'> n, in the second program. Obviocusly the remaininz

fitenime N2 -, at 02, in the first program must be larger than the remaining

ifetime NZ - nz' in the second program. Consequently,
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'tg. 2a shows a hypothetical intersection between two damage curves. A1A2 and

B, represent the two loading programs described above. It is seen that (2.3)

£ £

s violated. Therefore, intersection is not possible and neighboring damage curves

re as in Fig. 2b.

) Damage curves do not intersect the n or ¢ axis (except at ¢ = o ).

Suppose that a damage curve intersects the n axis. This wou!! imply that
n a two-stage loading program with amplitudes 0,0 the lifetime is smaller than
1(0). But the lifetime must be N(0) since the loading is really one stage.
'herefore the damage curve must pass through the point 0,0 which is not possibl:

in view of (a).
Suppose that a damage curve passing through nys 01 intersects the ¢ axis

it :2“ This would imply that if the specimen is exposed to ny cycles at O

ne remaining lifetime for cycling at 02 is N2’ which can only be correct if

1
= 0. Therefore, no damage curve intersects the O axis below cg.
In view of the properties (a) - (c) of the damage curves, it is seen that thoy
rm a family of non-intersecting curves within the region of the s-n plane
hich is bounded by the n,0 axes and by the S-N curve. The damage curves all
va=s through the point O;Og and approach the n,0 axes asymptotically. The S-N
urve is the limiting damage curve. It corresponds to a two stage loading in whi:h

allure occurs for the first stress 0] and residual lifetime for ”2 is zer

The simplest procedure to assess the form of the damage curves is to assume
hat their mathematical description is similar to that of the S-=N curve. Let

‘he equation of the S=N curve ve represented in the form

| | , | R—




gl = osf(N,P) (24

here N denotes value of n for a point on the S-N curve. Then the equation

of the damage curves is assumed to be given by the similar form

o = osf(n,y) (2.5)

g is determincd

The parameter 7Yy for a damage curve passing through the point nl; 1

by inserting those values into (2.5) and solving for Y.
The two most common analytical representations of S-N curves are:

(L) O 1is a linear function of loglON. This will be called the semi-log form.
(2) Jogloo is a linear function of logloN. This will be called the log-log

torm. Thus

Q
{]

Us(l + I' log N) (2.6)

fa both of these representations N=1 is considered physically equivalent to
N=0

It follows that the corresponding forms of damage curves passing through a
specified point n,; O. are:

1*

g

1]

g (1 + y log n) (a)

(2.8)
}"]/"Y ‘—l
2 (b)

It

log n
Of 1




—

G
= oan ; log(O/OS) =y log n (a)
(2.9)
z log(cl/Os) X o
Y log n

1

The form (2.8) is generally more suitable for fiber composites while the form

(2.9) is more suitable for metals.

The analytical expressions (2.6-2.9) are merely convenient approximations and
should not be taken too literally. It is seen that all curves intersect the N
axis contrary to theorem (c). The conclusion is that for very low stress ampli-

tudes the analytical expressions are not good approximations.

Other fitting difficulties may occur at small number of cycles. It fre-
quently happens that the Gs determined from S-N curve fitting is not the
O found by static testing. In that case the former should be chosen and be 1

regarded as a curve fitting parameter. L

It is permissible to fit a convenient portion of the S-N curve, for the

range 0. £ 0 X 0

1 g SaY, by the analytical expressions. In that case, the valid-

ity of the damage curve expressions is limited to that loading range and OS is

IR ey

a titting parameter.

The S-N curve may be represented by more than one function. For example:

3
! -
a broken straight line in log-log presentation. In that case the damage curves
would be similarly represented.
4
[f the analytical forms do not prove accurate enough it is necessary to deter- 3
mine the damage curves by testing. In order to determine a damage curve which passes

through the point nl;G] a group of specimens are subjected to ny cycles at U]

Each of

—

and are then cycled to failure at different stress levels 02, 03, “ew

the lifetimes at © determine a point on the damage curve.

PXLITIRES




I'he damage curves can be separately defined for two stage loadings which
ire of the low-high type or of the high-low type. There then arises the question
1f both sets of curves are identical. Consider for this purpose a loading pro-
gram in which n, cycles take place at cl. Then the amplitude is raised to

for the duration of a very small number of cycles. After that, the amplitude

1s reduced again to Jl, and cycling is continued until failure. A diagram of
such a loading program in the s-n plane is shown in Fig. 3. If the number of

cvceles to failure is insignificantly affected by the rise to and is thus

05
equal to NI' the lifetime at }1’ then the segment A1A7 is insignificant and

the upward damage curve A,B coincides with the downward damage A, B s

11 i
however, this is not the case, the upward and downward damage curves are different
and the damage curves exhibit a hysteresis phenomenon. On the basis of experience
1n fatigue testing, it is reasonable to assume that such an effect will not be
signiticant at low to moderate stress rises but may be significant at high

stress rises with consequent conclusions for the identity of upward and downward

damage curves.

It is to be emphasized that it does not seem possible to include such
hysteresis effects in the simple analytic representations (2.8 - 2.9) since they
ire based on the form of the S-N curve where hysteresis cannot enter. There-

re, such effects must be uncovered by experiments. This appears to be a

diificult task because of the considerable scatter of fatigue failure results.




3. Analysis of Loading Programs

The simplest loading program is two-stage cyclic loading. Its analysis
in terms of the damage curves is trivial since the damage curves have been

defined in terms of residual lifetime under such loadings. Let Ol be applied

ftor n, cycles. Then the stress amplitude is changed to 02 and cycling is

continued until failure occurs after n cycles. It is required to compute n

2 2
Let it be assumed that the S-N curve is of form (2.6) and that the damage

curves are of semi-log form (2.8a). Application of ny cycles at Ul defines a

damage point, Fig. 1. The damage curve passing through this point is given by

(2.8). It follows that

log(Nz—nz) o1

02 = Os[l + W ( E“ - 1] ()
1: s
Solving for n2 we have
1-52
n, =N, o~ % (3.2)
2 2 1 i
where
(8] (0]
. v '
Sy 28 R
s s
'ne quantity
n n
#om =L o (3.4)
1 2

1s defined as Miner's coefficient (for two stage loading). It follows easily

from (2.6a) and (2.8a) that (3.2) can be written as

e

il

PR T




]2

l-s
n 2 n2

1.
($5)1-s] +5 =1 (3.5)
! P

which replaces Miner's rule for the present case. It follows from (3.4 - 5) that

1-52
n, n, % -
H=3doe = o el (3.6)
1 1
i it 1s easily shown that

M21 s 2 S,

when (370
M<1 slSS2

A similar analysis for damage curves of log-log type, (2.9),yields the

results

1 n
(%) +E =1
1 2
(3.8)
n, 0, log s2/1og sy
M=1+—/— - (=)
Nl N1

Again, it is easily shown that (3.8) complies with (3.7).

Note that (3.5) and (3.8) are of the form (1.4) which is based on an expon-

i ential damage rule postulated by Marco and Starkey [7].

Plots of Miner's coefficient for two-stage loading as given by (3.6) and
(3.8) are shown in Fig. 4. It is seen that there is considerable difference

between the present prediction and Miner's rule.




We now proceed to the case of multi-stage loadings. The approach will be

illustrated by treatment of a three-stage loading. A specimen is subjected to n,

then to n cycles at amplitude o Then the stress

cycles at amplitude O 2

e 25

level is changed to © and it is required to determine the remaining lifetime

3
nye Consider the two stage loading Ol, 02. Once the stress level is changed to
02 we proceed on the damage curve passing through point s Ol, Fig. 5, until the
level 02. At this stage the remaining lifetime is N2 -0y, After n, cycles
are applied at this stress level the remaining lifetime is N, - n - n Tt

2 12 2"

follows that if the specimen is subjected to n o + n, cycles at 02 the remain-

ing lifetime is the same as that of a specimen subjected to the two stage loading
under consideration. (In much vaguer language we would say that the two loadings
result in the same damage). Consequently, the three stage loading is equivalent

to the two stage loading 62 > n, o n, cycles, 03 > ny cycles. On the basis of

the equivalent loading postulate we can use the two stage loading procedure which

implies that after n, cycles at 02 we proceed to level 03 on the damage curve

which passes through the point i, T
7 A

9 This determines the remaining life-

time n,.
3

Evidently this procedure can be generalized to multi-stage loadings with any

number of stages. It follows that: the damage curves, defined for two-stage

loadings, are sufficient information to determine lifetime for any multi-stage

.

loading.

P

For analytical purposes it is convenient to adopt the following notation: the

-

damage curves which are needed for transition from one loading level to another are

e

denoted D Dy, ..., the last one being the S-N curve. The abscissa of a point

] ’
on damage curve Dk at stress level o, is denoted Mg Lifetime at Jo5 Lees

abscissas of points on the S-N curve is denoted N,.
{




Consider a three-stage loading, Fig.

tvpe. With the notation adopted

I'll == n”
By = Bag ™ e
Ba = Fhy il

Since the damage curves have, by

a0 5

5, with damage curves of semi-log

(3:19)

hypothesis, the same functional form as the

S-N curve, it follows at once that (3.5) can be interpreted as a relation
between n, n, where the damage curve 2 now replaces the S-N curve of the
previously considered two level loadings. Therefore
0y l-s) n,
{5 APl e (3.10)
21 22
Similarly, we interpret the points n22;02 and n23;03 as a two level
loading. Therefore, from (3.5)
l-s3
oy D o
(2072 2 (3.11)
2 3
Using the functional form of the S-N and damage curves (2.6) and (2.8&), it

follows from (3.10 - 11) that
1—s2 1_g3
) n2 1-s
R L Bl e
i 2

Therefore the Miner's coefficient

n. ’
ty =1
3 S

is given by




n n
1=
- [ (§5)Ts, +N—2] "2 (3.13)
2

"
M=1+N— +
1L

=

Similar analysis for the log-log forms gives the results

log 53/log s

: log 32/10g S, . 2 0
a1 t5 ) tq =1
S 2 3
(3.14)
n, n, ny log sz/log s; n, log s3/1og S,
M=1l+ 2+ 5o () + 2= ]
1 2 1 2

As a final example for multi-stage loadings, we consider the case of
periodic two stage loading where the period (called block in fatigue jargon)
is composed of 9, for n, cycles followed by I, for n, cycles. A rep

resentation of this loading for nondimensional stresses is shown in Fig. 6a.

The loading path in the s-n plane is shown in Fig. 6b.

Let the inverse of a damage curve function s = f(y,n) be written

n = g(y,s) s = 0ofc (3.15)

An alternative form is

Y = y(5,0) (3:.16)
With the nk notation adopted above, we proceed in the following manner
X
along the loading path shown in Fig. 6a.

e Al pat




12 = g(Yl,Sz) o Y(nl,sl)

Bag =~ Pya " 0y (3.17)
n,, = g(Yz,sl) Yo = ¥ (“22’32)
n = n + 0

This step-by-step procedure is continued until the S-N curve is reached, thus

determining the lifetime for the loading.

The functions g and vy for the two types of damage curves considered are

s=1
g(s,y) = 10
semi-log (3.18)
(s 1) = s—-1]
Y8, log n
LY
/'»'u(:’a‘.’) =8
log-log (319}
s _log s
y(u,l’l) J_OS.’, =
3
I'he procedure is very convenient for numerical computation. It is also 3

casily realirzed that it can be used to analyze any multi-stage loading.

poes

We now consider the case when the loading amplitude varies in arbitrary

T ——

ntinuous tashion with the number of cycles, which is denoted n. Thus

) = 0(n)




i, wtt ittt o«
e ——

with inverse

n = n(0) €3.21)

The loading (3.20) may be regarded as a multi-stage loading consisting of an
infinite number of levels with increments do. Figure 7a shows the loading curve
(3.20) with initial value g, The representation of (3.20) in the s-n plane
is as follows: At UO plotted on the o axis proceed dn horizontally to the
right. Trace a damage curve passing through the point dE;GO and on it proceed
until JO + do, where do 1is determined by dn and the slope of the loading
curve at ﬂo" At the point thus reached in the s-n plane, proceed another dn
horizontally and repeat the previous process. Fig. 7b illustrates this process
for a typical point on the loading curve (3.20) and the image of that point in
the s-n plane. It is seen that by this procedure the loading curve C is

mapped into the curve C' 1in the s-n plane. Intersection of curve C' with

the S-N curve defines failure under the loading program (3.20).

This procedure of construction of the image C' of C will now be expressed

analytically. Let the equation of C' be denoted
G(s,n) =0 s = 0/0 (3.22)

The relation between d0 and dn on this curve is illustrated in Fig. 7b.

The differential dn 1is given by
dn = (Inl) + dn (3:23)

where an is the contribution due to movement from © to 0 + d0 on the damage

D;m. Note that at this point

curve which passes through the point n




= g

n. = n (3.24)

Let the damage curve equation (2.5) be written in the form

ny = g(s,Y) (3.25)

Since Y is constant on this curve it follows that

dme - = ==—=idg (3.26)

In view of (3.24 - 25), v of the damage curve passing through the point n_;0O

can be expressed from (3.20) in the form 3

¥ = YsLn) (3.27)
Now write (3.21) in the form

n = h(s) (3.28)

Introducing (3.26 - 3.28) into (3.23) we obtain

dn = [ EB%%LIL + h'(s)]ds (a)
(3.29)
Y = Y(8,1) (b)

where (b) 1is to be introduced into (a) after the partial differentiation has

been performed.

Equ.(3.29) is a nonlinear ordinary first order differential equation of

the type




dn = ¢(s,n)ds

lts integration starting out from an initial point no;oO gives the equation

of the curve €', (3.22).

The intersection of (3.22) with the S-N curve defines the stress level Uu
at which failure occurs under the loading program (3.20). The cycle ordinate n
tn the S-N plane associated with the intersection point does not define the

lifetime. The lifetime ﬁu is defined from (3.20) by (see Fig. 7)

zZ\
il

n(o ) (3.30)
u
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Thig raises a problem when there is no one-to-one correspondence between 0 and
h  as defined by (3.20), which happens when (3.20) is not a monotonic function.
In this event it is necessary to determine during the integration of (3.29) the
imapes of the extrema of (3.20) on C'. In this fashion Ou is then located on

rthe proper monotonic part of (3.20).

[n the important case of load discontinuities in (3.20) it is necessary
to integrate (3.29) until the image of the discontinuity in the s-n plane is
reached. The jump in 0 then proceeds on the damage curve which passes through
the end point of integration reached, in the s-n plane. Then the integration

is continued until th: next discontinuity, etc.

The functions g(y,s) and vY(s,n) which appear in (3.29) have been given
for semi-lop and lop-log damage curves by (3.18 - 19). Therefore, for these

cases, the differential equation (3.29) assumes the forms
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dn = [ ﬂglfﬂln n 10 + h'/8))ds (8) semi-log
(3.31)
- n log n . _
dn = [ Syoas T hi(s)lds (b)  log-log

A representation of (3.32) in terms of the variables n, n can be obtained

by writing (3.20) in the form

s = H(n) (3.32)

and substituting into (3.21).

It appears that analytical integration of equs. (3.31) is not possible but

the equations are readily integrated numerically by use of the Runge Kutta method,

rn = log n (3.33)

Then (3.31) assume the forms

1
.gﬂ - *Tl 4+ _n'(s) (a)
S %7 10Mn 10 (3.34)
dan _ n h'! (s) 1
ds [ s log s + ] n 10 (b)

10"

As an example we consider the loading program shown in Fig, 8a. The initial
amplitude is given by Sy = OO/CI‘5 and then diminishes linearly to a value Sp+
Cycling 1s then continued at constant amplitude until failure. The linear variation

of cycling amplitude is described by

for example. For this purpose it is convenient to introduce the variable O
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G o= SO + (S] - so) —[{—- (3035)

Lt tollows from the definition (3.28) and from (3.35) that

"0

h'(s) = Py (3.36)
170

With this value of h'(s) rqus. (3.34) must be integrated starting out at the

initial point n = 0; s = so. Note that n = O corresponds to n = 1, not n = O,

This is an insignificant correctlon which 1s required because of the log repres- -

entation.

Integration of the differential equations gives the image C' of the loading

function in s-n plane. This image is shown in Fig., 8b for the semi~log case,

4

equ. (3.34a) when Sg = 0.7, ny = 10°. It is seen that the image C' in the s-n

plane of the linear loading curve C starts out horizontally and then approaches
asymptotically a straight line passing through the point n =0, s = 1.0, i.e.,

a damage curve. This is a general characteristic of solutions of (3.34) since

for large n the second term on the right sides becomes very small in comparison

n

to the first terms because of 10 in the denoﬁinator. If the second term is

neglected the solution of the differential equations are the damage curves (2.8a),
(2.94) respectively. This is also evident from (3.23) since neglect of the second
term on the right side of (3.34) is equivalent to neglecting dn in comparison

to an.

For Linear loading from 9 to s, the remaining lifetime is given by the

horizontal distance between the point on C' where s=g_, and the S-N curve, in
P 1’

s,n coordinates, Note that the present figure is in s,log n coordinates. Fig. 8b

shows remaining lifetimes for varilous values of 8y
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In order to compare the present prediction to those of Miners' rule it is

necessary to write Miners' rule for a continuous loading function. To do this

the continuous loading (3.20) is interpreted as a multi-stage loading with successive

load increments do and cycle increments dn. Then (1.3) may be written

u e u .-
dn dn/do _
[ = J ﬁzay— do =1 (337
where N(0) 1is lifetime at constant 0 as given by the S-N curve. Equ. (3.38)

defines the failure stress 9, Lifetime ﬁu is then given by (3.30).

In terms of the nondimensional stress s = :7/0S (3.37) assumes the form

S

% h'(s) =
[ B e 1 (3.38)

S

0

For semi-log and log-log representations (2.6), (2.7) we have respectively

s=1
I

N(s) 10

(3.39)

N(s) Sl/F

]

while h'(s) for the linear loading is given by (3.36). For the present loadirg

(3.38) assumes the form

S
i
h'(s) | _
J N(s) ds + N(Sl) = I (3.40)
0]

which defines the residual lifetime nI on the basis of Miner's rule.
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It follows from (3.40), (3.36) and (3.39) that n is given by

i
. r g N(SO)
W= N(Sl) = In 10 So78, Cus ﬁ?éiT ] (a) semi-log
(3.41)
g N(Sl)

o iis ﬁ’@;) - 5] (b) log-log

r
n. = N(s ) = ——
i r-1 0751

The ny predicted by (3.4la) are also shown in Fig. 8b. It is seen that
there are significant differences between remaining lifetimes as predicted by

Miner's rule and the present theory.

Analysis has also been performed for the case of pure linear variation of
cycle amplitude (increasing and decreasing)with number of cycles, until failure.
Results obtained for various such cases showed little numerical difference between
lifetime predictions by present theory and by Miner's rule. It is of great
importance to arrive at some general conclusions with respect to loading char-
acteristics for which Miner's rule and the new theory predict significantly
different lifetimes. It appears that much further analytical work is needed

to obtain such information.

4. Summary and Conclusion

A rational phenomenological theory to compute fatigue lifetime under arbitrary
cyelic loading programs has been developed. The theory is based on the concept of
damage curve families which represent all possible two stage cyclic loadings = to -
failure. The damage curves may be obtained experimentally. In the present work
their analytical form is postulated on the basis of assumed similarity with S=N

curve analytical representations.

PRy N .

La




The theory is based on a basic assumption which has been termed the

equivalent loading postulate which defines in macroscopic terms specimens which

have suffered the same damage under different loading programs. This postulate
leads to uniqueness of the damage curves and underlies methods of lifetime analysis

in terms of the damage curves.

Procedures of lifetime prediction have been given for piecewise constant cycle
amplitude variation (multi-stage loading) as well as for continuous variation of
cycle amplitude with number of cyvcles. In the first case analysis consists of
a simple step by step procedure in terms of damage curves. In the second case
colution of initial value problems for first order nonlinear differential equations

is required.

Damage curve families considered in this work are straight lines in 1og n, ©

or in log n, log 0 planes.

Analytical results have shown that for multi-stage loading programs the
predictions of the present theory are considerably different than those based
on Miner's rule. Analysis of a few cases of continuous amplitude variation programs
has shown that in certain cases present predictions are significantly different

from those based on Miner's rule while in others this is not the case.

Further analytical work is needed to search for loading characteristics which
lead to significant discrepancies between prediction by Miner's rule and present
theory. It is also of great importance to establish an analytical procedure ftor
random loadings, i.e., where the cycle amplitude is a random variable and only
statistical loading information is available. This is a difficult problem since
1t requires solution of nonlinear differential equations with random inputs.

An experimental program is now under way to examine the validity of the theory

This consists of two stage loadings-to-failure of gioss tiber/epoxy specimens.
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FIG. 2 NON-INTERSECTION OF DAMAGE CURVES

FIG. 3 HYSTERESIS EFFECT ON DAMAGE CURVES
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